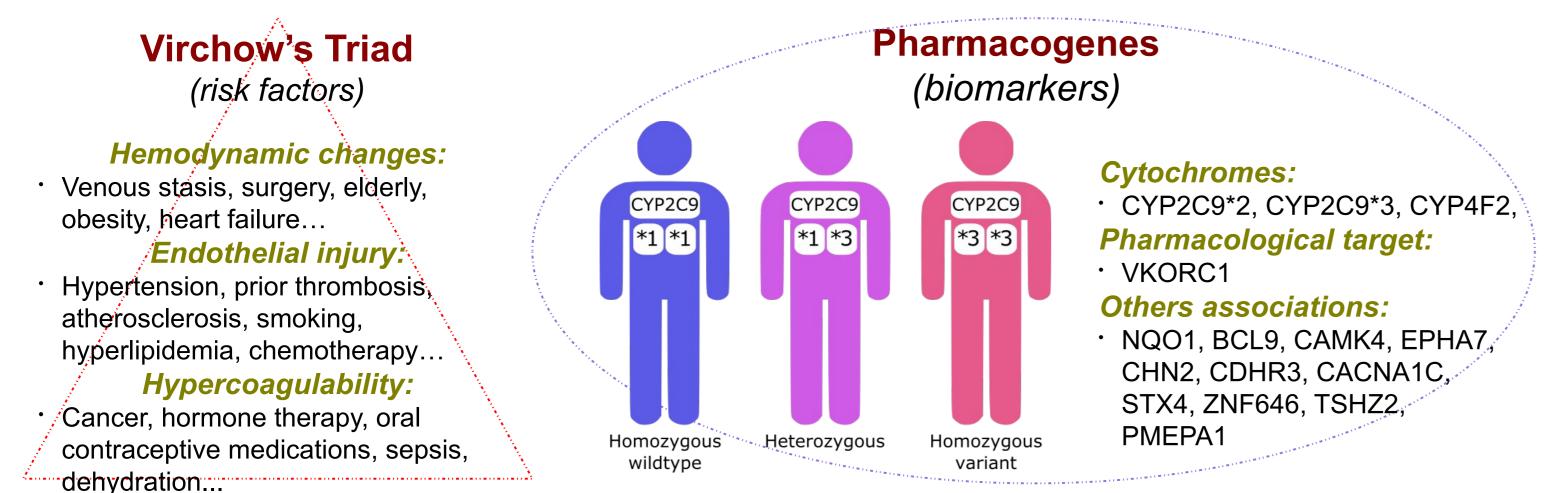
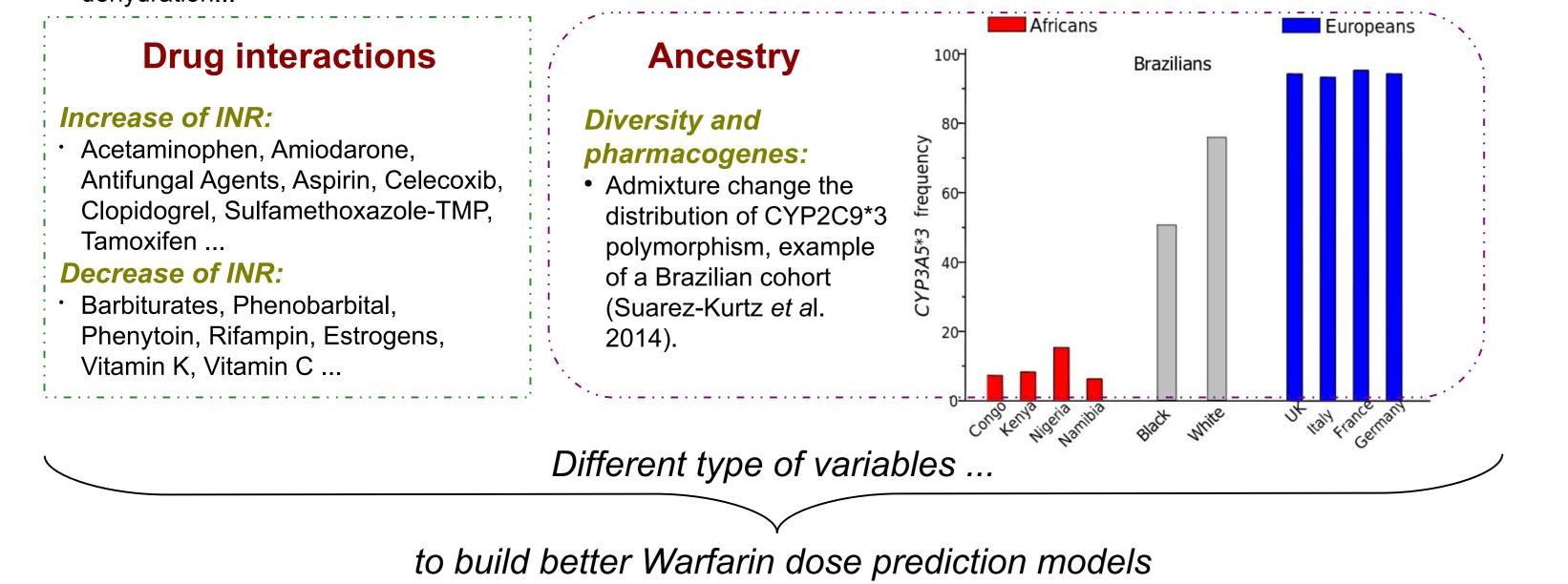
WARFARIN DOSE PREDICTION THROUGH A USER INTERFACE USING CLINICAL, DEMOGRAPHIC AND PHARMACOGENETIC DATA

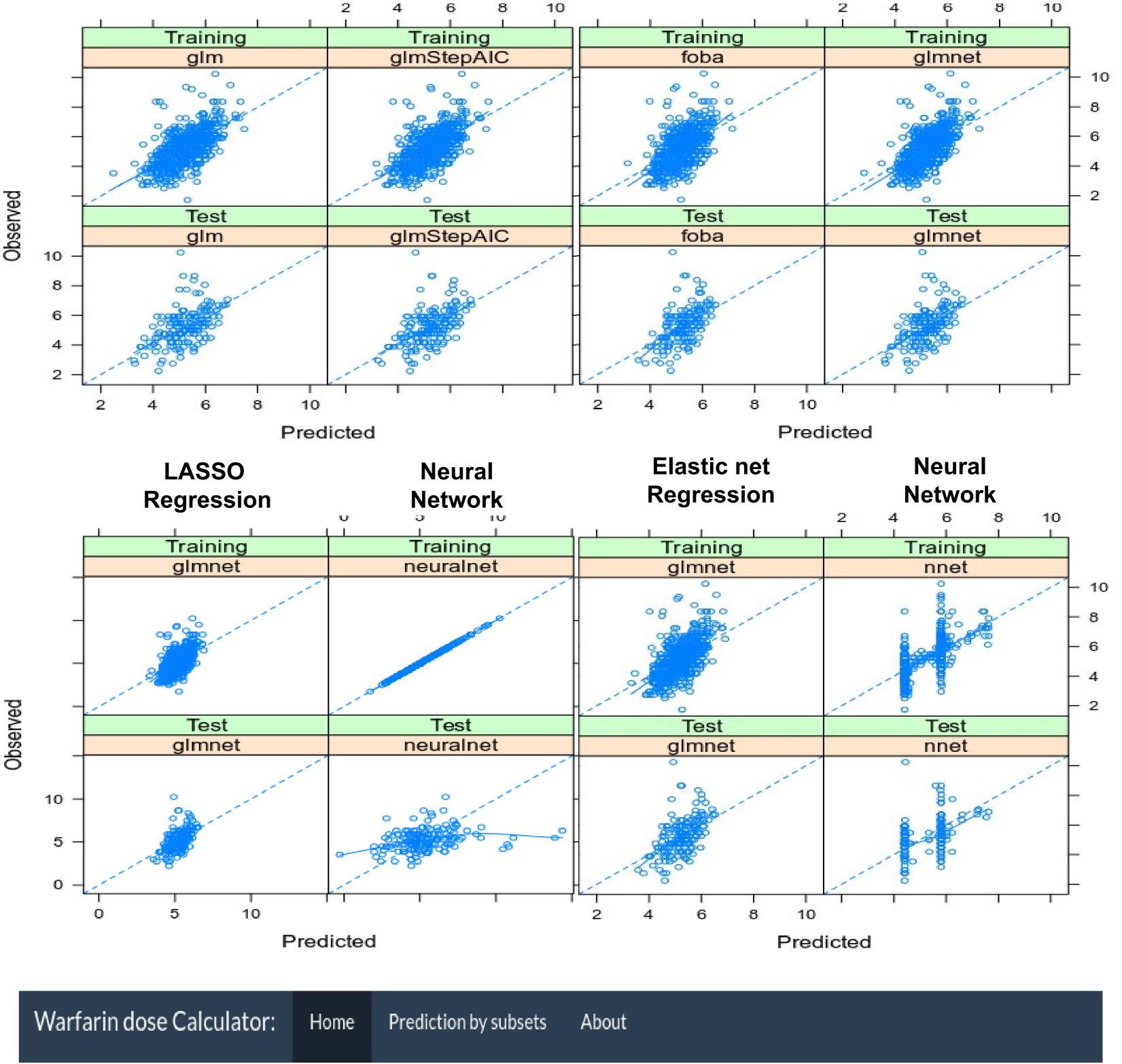
Jennifer Montoya Neyra¹, Paulo Caleb J. L. Santos³ and Júlia M.P. Soler^{1,2} ¹Bioinformatics Graduate Program, University of São Paulo. ²Statistics Graduate Program, University of São Paulo. ³Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), FM-USP.

INTRODUCTION

Warfarin is an anticoagulant administrated orally, composed by a racemic mixture of R and S enantiomers, indicated in the prophylaxis and treatment of venous thrombosis, pulmonary embolisms, thromboembolic complications from atrial fibrillation or cardiac valve replacement, to reduce the mortality in cases of recurrent myocardial infarction, stroke and systemic embolization. Warfarin has a narrow therapeutic window, which tends to produce serious adverse effects such as bleeding, skin necrosis or even death. Its pharmacological action can be affected by different factors such as age, ancestry, diet, smoking, comorbidities, genetic mutations (pharmacogenes) that encode cytochromes (CYP2C9, CYP4F2), the enzyme epoxide-reductase of vitamin K (VKORC1), among others. Thus, several pharmacogenetic algorithms have been developed to predict a safe dose of this drug, always with the main objective that these models are applicable to different people with different ancestralities maintaining accurate predictions. Contributing to this overall objective, we work on a user interface (UI) designed to assist in warfarin therapy by predicting a best therapeutic dose, calculated from the data entered into the UI. It will be able to predict more accurate doses for patients diagnosed with atrial fibrillation, stroke, thrombosis or heart valve prosthesis in whom it is desired to maintain an international normalized ratio (INR) between two and three, using their clinical, demographic and pharmacogenetic data from patients of the Brazilian Heart Institute (InCor - USP). of the Medical Faculty of the University of São Paulo (Santos *et al.*, 2015).




RESULTS


The best adjusted model was the Ridge Regression with Variable Selection, which obtained the best performance when analyzing both the training group (MAE = 7.54, RMSE = 0.993, R-squared = 0.296) and the evaluation group (MAE = 0.766, RMSE = 1.07, R-squared = 0.282).

Multiple linear Regression

Variable selection (stepwise -AIC) Forward– Backward Greedy Ridge Regression

METHODS

Data set: The data set with the information of 766 individuals, which reached international normalized ratio (INR) values between 2 and 3 when receiving a maintenance dose of warfarin was divided in the training (614 individuals) and test (152 individuals) subgroups. This data include clinical, demographic, pharmaceutical information and variant genotypes of the cytochrome P450 2C9 (CYP2C9), vitamin K epoxy reductase (VKORC1), leukotriene B(4) omega-hydroxylase 1 (CYP4F2) and NAD(P)H dehydrogenase (quinone) 1 (NQO1) pharmacogenes.

Prediction models: The fitting process and model performance analysis were developed in the R language, using the caret, MASS, foba, neuralnet and nnet packages. The following models were evaluated: the International Warfarin Pharmacogenetics Consortium (IWPC) algorithm, multiple linear regression, regression using regularizers (Lasso regression, Ridge regression), Elastic net regression, variable selection using information criteria (AIC), Forward–Backward Greedy algorithm (Foba) and a simple neural network model that consists of 3 hidden layers of 100 neurons each. To evaluate the accuracy of the models, the mean absolute error (MAE), root-mean-square error (RMSE) and R-squared were calculated.

Model	Hyperparameter	Optimal value		
IWPC	-	-		
Linear regression	-	_		
Ridge	alpha	0		
	lambda	0.219929		
LASSO	alpha	1		
LASSU	lambda	0.366233		
Stepwise AIC	-	-		
Foba	k	9		
1004	lambda	0.126486		
Elastic net	alpha	1		
Elastic net	lambda	0.035854		
	neurons (Layer 1)	100		
Neural network (neuralnet)	learning rate	0.001		
	activation	identity		
Noural notwork (nnot)	size	8		
Neural network (nnet)	decay	2.3645e-06		

Input parameters:

Name (ID):		Comorbidi	Comorbidities:		Variant genotypes:		
Jenn			🗌 None	Hypertension		None	CYP4F2_2
Weight (kg):	Age Height (years): (cm):	Alcohol	lism 🔲 CCI		CYP2C92_1	NQ01_1	
		_	Cardiac			CYP2C92_2	NQ01_2
50	50	150	ischemi			CYP2C93_1	VKORC1_1
			Diabete	es 🔲 Smoking		CYP2C93_2	VKORC1_2
Gender: Color/race:		Hemorr	rhage		CYP4F2_1		
		Hyperli	pidemia				

CONCLUSION

Male

The UI is still in development, but we have great expectations about its applicability and usefulness for patients who require it. Considering the sensitivity of the models in relation to the nature of the data, the UI will offer more accurate results, as long as the models can be trained with a larger number of patients.

REFERENCES

- P. C. J. L. Santos, L. R. Marcatto, N. E. Duarte, R. A. Gadi Soares, C. M. Cassaro Strunz, M. Scanavacca, J. E. Krieger, and A. C. Pereira. Development of a pharmacogenetic-based warfarin dosing algorithm and its performance in Brazilian patients: highlighting the importance of population-specific calibration. Pharmacogenomics, 16(8):865–876, jun 2015.
- F. Pedregosa, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, F. Pedregosa, G. Varoquaux, A. Gramfort, B. Thirion, P. Prettenhofer, J. Vanderplas, M. Brucher, M. et al., Scikit-learn: Machine Learning in Python Gaël Varoquaux. Journal of Machine Learning Research, 2011.
- T. Klein, R. Altman, N. Eriksson, B. Gage, S. Kimmel, M. Lee, N. Limdi, D. Page, D. Roden, M. Wagner, M. Caldwell, and J. Johnson. Europe PMC Funders Group Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data. N Engl J Med, 360(8):753–764, 2009.
- M. Pimorade. Pharmacogenetics and pharmacogenomics. Br J Clin Pharmacol, 52(4):345–347, 2001.
- Z. Ma, P. Wang, Z. Gao, R. Wang, and K. Khalighi. Ensemble of machine learning algorithms using the stacked generalization approach to estimate the warfarin dose. PLOS ONE, 13(10):e0205872, oct 2018.
- Y. Tao, Y. Zhang, and B. Jiang. Evolutionary learning-based modeling for warfarin dose prediction in Chinese. In Proceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO '17, pages 1380–1386, New York, New York, USA, 2017. ACM Press.